3.3 Local Extrema and Extrema on Open Intervals

Lecturer: Xue Deng

Recall: Global maximum value on S .

Local maximum value or relative maximum value

For example: What is the local maximum value in the following figure?

Definition of Local Extrema

Let S, the domain of f, contain the point c.

(i) $f(c)$ is a local maximum value of f if there is an interval (a, b) containing c such that $f(c)$ is the maximum value of f on $(a, b) \cap S$;
(ii) $f(c)$ is a local minimum value of f if there is an interval (a, b) containing c such that $f(c)$ is the minimum value of f on $(a, b) \cap S$;
(iii) $f(c)$ is a local extreme value of f if it is either a local maximum or a local minimum value.

Theorem of Local Extrema

First Derivative Test

Let f be continuous on an open interval (a, b) that contains a critical point c
(i) $f^{\prime}(x)>0$ for all x in (a, c) and $f^{\prime}(x)<0$ for all x in (c, b), then $f(c)$ is a local maximum value of f. (see Figure 1)
(ii) $f^{\prime}(x)<0$ for all x in (a, c) and $f^{\prime}(x)>0$ for all x in (c, b), then $f(c)$ is a local minimum value of f.(see Figure2)
(iii) $f^{\prime}(x)$ has the same signs on both sides of c, then $f(c)$ is not a local extreme value of f.(see Figure3)

Proof of Theorem A: First Derivative Test

Proof of (i): Since $f^{\prime}(x)>0$ for all x in (a, c),
f is increasing on $(a, c]$ by the Monotonicity Theorem.
Again, since $f^{\prime}(x)<0$ for all x in (c, b),
f is decreasing on $[c, b)$.
Thus, $f(x)<f(c)$ for all x in (a, b), except of course at $x=c$.
We conclude that $f(c)$ is a local maximum.
The proof of (ii) and (iii) are similar.

Local Extrema

Figure 1

Figure2

a local extrema value

Figure3
not a local extrema value

Theorem of Local Extrema

Second Derivative Test

Let f^{\prime} and $f^{\prime \prime}$ exist at every point in an open interval (a, b) containing c, and suppose that $f^{\prime}(c)=0$.
(i) If $f^{\prime \prime}(c)<0$, then $f(c)$ is a local maximum value of f.
(ii) If $f^{\prime \prime}(c) \gg$, then $f(c)$ is a local minimum value of f.
(i) $f^{\prime \prime}(c)<0 \Rightarrow f^{\prime \prime}(c)=\lim _{x \rightarrow c} \frac{f^{\prime}(x)-f^{\prime}(c)}{x-c}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)-0}{x-c}<0$
$x \neq c, \frac{f^{\prime}(x)}{x-c}<0 \Rightarrow f^{\prime}(x)(x-c)<0 \Rightarrow \begin{cases}x<c & f^{\prime}(x)>0 \\ x>c & f^{\prime}(x)<0\end{cases}$
$\therefore f(c)$ is a local maximum value.
(ii) Work by yourself.

Example 1

? For $f(x)=(x+1)^{3}(x-1)^{\frac{2}{3}}$
Use the first Derivative Test to identify local extrema.
(i) $f^{\prime}(x)=3(x+1)^{2}(x-1)^{\frac{2}{3}}+\frac{2}{3}(x+1)^{3}(x-1)^{-\frac{1}{3}}$

$$
=\frac{(x+1)^{2}(11 x-7)}{3(x-1)^{\frac{1}{3}}}
$$

(ii) stationary points: $x=-1, \quad x=\frac{7}{11}$. singular point: $\boldsymbol{x}=\mathbf{1}$.
(iii) Table

Example 1

(iii) Table

Stationary points: $x=-1, \quad x=\frac{7}{11}$,

$$
f^{\prime}(x)=\frac{(x+1)^{2}(11 x-7)}{3(x-1)^{\frac{1}{3}}}
$$

Singular point: $\quad x=1$.

\boldsymbol{x}	$(-\infty,-1)$	-1	$\left(-1, \frac{7}{11}\right)$	(71	$\left(\frac{7}{11}, 1\right)$	1	(1,+m)
$f^{\prime}(x)$	+	0	+	0	-	Not exist	+
$f(x)$	\%	$\stackrel{\square}{\square}$	7	䃭	\}	-	\nearrow

(iv) $f\left(\frac{7}{11}\right) \approx 2.2$ is a local maximum value.
$f(1)=0$ is a local minimum value.

Example 2

? For $f(x)=\frac{1}{3} x^{3}-x^{2}-3 x+4$
Use the Second Derivative Test to identify local extrema.

$$
\begin{aligned}
& f^{\prime}(x)=x^{2}-2 x-3=(x+1)(x-3)=0 \Rightarrow x=3, x=-1 \\
& f^{\prime \prime}(x)=2 x-2 \\
& f^{\prime \prime}(-1)=-2-2=-4<0 \Rightarrow f(-1) \text { is a local maximum value }
\end{aligned}
$$

$$
f^{\prime \prime}(3)=2 \cdot 3-2=4 \gtrdot 0 \Rightarrow f(3) \text { is a local minimum value }
$$

Example 3

? Find the local extrema value as to $f(x)=x^{2}-6 x+5$ on $(-\infty,+\infty)$

$$
\because f^{\prime}(x)=2(x-3)=0 \Rightarrow x=3\left(f^{\prime}(3)=0\right)
$$

$$
f^{\prime \prime}(x)=2 \Rightarrow f^{\prime \prime}(3)=2>0
$$

$\therefore f(3)$ is a local minimum value.

Summary

First Derivative Test:
Let f be continuous on an open interval (a, b) that contains a critical point c
(i) $f^{\prime}(x)>0$ for all x in (a, c) and $f^{\prime}(x)<0$ for all x in (c, b), then $f(c)$ is a local maximum value of f.
(ii) $f^{\prime}(x)<0$ for all x in (a, c) and $f^{\prime}(x)>0$ for all x in (c, b), then $f(c)$ is a local minimum value of f.
(iii) $f^{\prime}(x)$ has the same signs on both sides of c, then $f(c)$ is not a local extreme value of f.

Summary

Second Derivative Test

Let f^{\prime} and $f^{\prime \prime}$ exist at every point in an open interval (a, b) containing c, and suppose that $f^{\prime}(c)=0$.
(i) If $f^{\prime \prime}(c)<0$, then $f(c)$ is a local maximum value of f.
(ii) If $f^{\prime \prime}(c) \gtrdot 0$, then $f(c)$ is a local minimum value of f.

Question and Answer

F. Find the local extrema value as to $f(x)=x^{3}+3 x^{2}-24 x-20$.
$f^{\prime}(x)=3 x^{2}+6 x-24=3(x+4)(x-2)$
Let $f^{\prime}(x)=0$, obtain the stationary points $x_{1}=-4, x_{2}=2$.
$\because f^{\prime \prime}(x)=6 x+6$,
$\therefore f^{\prime \prime}(-4)=-18<0 \Rightarrow$ the local maximum value $f(-4)=60$,

$$
f^{\prime \prime}(2)=18>0 \quad \Rightarrow \text { the local minimum value } f(2)=-48
$$

Local Extrema

Extrema on Open Intervals

